Introduction to Stochastic Search and Optimization
Introduction to Stochastic Search and Optimization
Estimation, Simulation, and Control
Spall, James C.
John Wiley & Sons Inc
04/2003
618
Dura
Inglês
9780471330523
15 a 20 dias
1201
Descrição não disponível.
Preface.
Stochastic Search and Optimization: Motivation and Supporting Results.
Direct Methods for Stochastic Search.
Recursive Estimation for Linear Models.
Stochastic Approximation for Nonlinear Root-Finding.
Stochastic Gradient Form of Stochastic Approximation.
Stochastic Approximation and the Finite-Difference Method.
Simultaneous Perturbation Stochastic Approximation.
Annealing-Type Algorithms.
Evolutionary Computation I: Genetic Algorithms.
Evolutionary Computation II: General Methods and Theory.
Reinforcement Learning via Temporal Differences.
Statistical Methods for Optimization in Discrete Problems.
Model Selection and Statistical Information.
Simulation-Based Optimization I: Regeneration, Common Random Numbers, and Selection Methods.
Simulation-Based Optimization II: Stochastic Gradient and Sample Path Methods.
Markov Chain Monte Carlo.
Optimal Design for Experimental Inputs.
Appendix A. Selected Results from Multivariate Analysis.
Appendix B. Some Basic Tests in Statistics.
Appendix C. Probability Theory and Convergence.
Appendix D. Random Number Generation.
Appendix E. Markov Processes.
Answers to Selected Exercises.
References.
Frequently Used Notation.
Index.
Stochastic Search and Optimization: Motivation and Supporting Results.
Direct Methods for Stochastic Search.
Recursive Estimation for Linear Models.
Stochastic Approximation for Nonlinear Root-Finding.
Stochastic Gradient Form of Stochastic Approximation.
Stochastic Approximation and the Finite-Difference Method.
Simultaneous Perturbation Stochastic Approximation.
Annealing-Type Algorithms.
Evolutionary Computation I: Genetic Algorithms.
Evolutionary Computation II: General Methods and Theory.
Reinforcement Learning via Temporal Differences.
Statistical Methods for Optimization in Discrete Problems.
Model Selection and Statistical Information.
Simulation-Based Optimization I: Regeneration, Common Random Numbers, and Selection Methods.
Simulation-Based Optimization II: Stochastic Gradient and Sample Path Methods.
Markov Chain Monte Carlo.
Optimal Design for Experimental Inputs.
Appendix A. Selected Results from Multivariate Analysis.
Appendix B. Some Basic Tests in Statistics.
Appendix C. Probability Theory and Convergence.
Appendix D. Random Number Generation.
Appendix E. Markov Processes.
Answers to Selected Exercises.
References.
Frequently Used Notation.
Index.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
vast; foundation; interdisciplinary; techniques; realworld; number; stochastic; problem; unique; goal; design; missile; drug; effectiveness; new; traffic; efficient; signals; strategies; investment; profits; decisions; order; solutions
Preface.
Stochastic Search and Optimization: Motivation and Supporting Results.
Direct Methods for Stochastic Search.
Recursive Estimation for Linear Models.
Stochastic Approximation for Nonlinear Root-Finding.
Stochastic Gradient Form of Stochastic Approximation.
Stochastic Approximation and the Finite-Difference Method.
Simultaneous Perturbation Stochastic Approximation.
Annealing-Type Algorithms.
Evolutionary Computation I: Genetic Algorithms.
Evolutionary Computation II: General Methods and Theory.
Reinforcement Learning via Temporal Differences.
Statistical Methods for Optimization in Discrete Problems.
Model Selection and Statistical Information.
Simulation-Based Optimization I: Regeneration, Common Random Numbers, and Selection Methods.
Simulation-Based Optimization II: Stochastic Gradient and Sample Path Methods.
Markov Chain Monte Carlo.
Optimal Design for Experimental Inputs.
Appendix A. Selected Results from Multivariate Analysis.
Appendix B. Some Basic Tests in Statistics.
Appendix C. Probability Theory and Convergence.
Appendix D. Random Number Generation.
Appendix E. Markov Processes.
Answers to Selected Exercises.
References.
Frequently Used Notation.
Index.
Stochastic Search and Optimization: Motivation and Supporting Results.
Direct Methods for Stochastic Search.
Recursive Estimation for Linear Models.
Stochastic Approximation for Nonlinear Root-Finding.
Stochastic Gradient Form of Stochastic Approximation.
Stochastic Approximation and the Finite-Difference Method.
Simultaneous Perturbation Stochastic Approximation.
Annealing-Type Algorithms.
Evolutionary Computation I: Genetic Algorithms.
Evolutionary Computation II: General Methods and Theory.
Reinforcement Learning via Temporal Differences.
Statistical Methods for Optimization in Discrete Problems.
Model Selection and Statistical Information.
Simulation-Based Optimization I: Regeneration, Common Random Numbers, and Selection Methods.
Simulation-Based Optimization II: Stochastic Gradient and Sample Path Methods.
Markov Chain Monte Carlo.
Optimal Design for Experimental Inputs.
Appendix A. Selected Results from Multivariate Analysis.
Appendix B. Some Basic Tests in Statistics.
Appendix C. Probability Theory and Convergence.
Appendix D. Random Number Generation.
Appendix E. Markov Processes.
Answers to Selected Exercises.
References.
Frequently Used Notation.
Index.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.